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TWO NONLINEAR MODELS

OF BRITTLE FRACTURE FOR SOLIDS

UDC 518.61: 539.375A. V. Shutov

This paper considers isotropic and orthotropic nonlinear constitutive relations for brittle materials
in the case of plane stresses. Numerical solution algorithms based on the finite-element method are
developed. The resulting material models are incorporated in the PIONER software. The correctness
of crack path determination is examined by solving a test problem of crack propagation. The isotropic
model gives mesh-dependent results, whereas the orthotropic model provides an adequate solution. It
is shown that solutions obtained for the isotropic model are close to those obtained by eliminating
failed elements.
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Introduction. Numerical modeling of crack nucleation and propagation began in the late 1960s and is dealt
with in fundamental papers [1, 2], where the so-called “discrete” and “smeared” crack models are introduced. With
time, the second approach based on models of the second type has gained popularity. It consists of modeling a
crack within the framework of continuum mechanics by introducing nonlinear constitutive relations of the material.
This is equivalent to introducing physical nonlinearity. A review and classification of the models is given in [3].

The most appropriate method for the numerical solution of nonlinear problems of solid-state mechanics is
the finite-element method (FEM). It underlies the development of a technology for solving nonlinear problems of
solid-state mechanics [4–6], in particular, nonlinear fracture mechanics. Problems of nonlinear fracture mechanics
can be considered as a particular case of elastoplastic problems (material behavior does not depend explicitly on
time) with constitutive relations of special form.

A distinctive feature of these problems is the absence of a theorem on the existence and uniqueness of
solutions. Under such conditions, in general, a numerical solution may not converge to the exact solution and does
not depend continuously on the input data. Success of using each particular nonlinear model depends on many
factors: its adequacy to the physics of the phenomenon, logical simplicity, and the existence of an effective and
stable procedure for numerical integration.

The subject of the present study is the correctness of modeling solid fracture, in particular, crack nucleation
and propagation in a brittle isotropic material using the FEM. Here, the FEM is considered as a version of the
Bubnov–Galerkin method with the basis functions defined in local subdomains (finite elements).

The paper gives a general formulation of the problem of nonlinear solid-state mechanics. Constitutive
relations are formulated for two models of a brittle material. In both models, the deformation is assumed to
be elastic up to fracture and fracture occurs when the principal tensile stress exceeds the ultimate strength of
the material. In the isotropic model, the material fails instantaneously and completely upon fracture, and in the
orthotropic model, the fractured material can be modeled by an orthotropic material weakened in a certain direction.
The latter is a particular case of the model proposed and successfully used in [7].
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The isotropic and orthotropic models are studied by solving a test problem of crack nucleation and propa-
gation. In spite of the fact that the exact solutions of this test problem obtained for the two constitutive relations
are equal, the numerical solutions differ considerably. The isotropic model fails to predict the cracking pattern
adequately. The orthotropic model has advantages over the isotropic model in this respect.

The method of elimination of failed elements has bee widely used recently. In this method, elements in which
fracture occurs are eliminated from the element assemblage. This method is a formal simplification of the method
based on the isotropic model. Numerical experiments have shown that these methods give close results. As in case
of the isotropic model, the method of eliminated elements fails to predict the crack pattern.

1. Equations of Solid-State Mechanics Taking into Account Physically Nonlinearity and Their
Spatial Discretization. Formulations of the basic equations and their discrete analogs for nonlinear problems
of solid-state mechanics can be found, for example, in [4–6]. We give equations that describe deformations of a
solid body under the assumption of small strains, rotations, and displacements (at the same time, large rigid-body
translation motion is allowed).

Let t be a monotonically increasing deformation parameter. In quasistatic problems, by the parameter t is
meant, as a rule, the external force, prescribed displacement, arc length of the integral curve in the displacement-
load space, etc. The basic equations of the problem taking into account physical nonlinearity are given below. 1.
Equations of equilibrium

∇ · σ = 0 in V (1)

with the boundary and initial conditions

u = u∗ on Su, N · σ = T ∗ on ST , u
∣∣∣
t=0

= u0.

Here and below, σ is the Cauchy stress tensor, u is the displacement tensor, V is the region occupied by the body
in the initial state, S is the closed surface bounding V , Su and ST are the parts of the surface S = Su ∪ ST on
which the displacement and stress vectors u and T ≡ N · σ, respectively, are specified, N is the outward unit
normal vector to the surface ST , and u0 is the initial-displacement vector; the specified quantities are marked by
an asterisk.

2. Kinematic relations

ε = (∇u + ∇ut)/2,

where ε is the Cauchy strain tensor and ∇u is the displacement gradient tensor.
3. Constitutive relation (at each material point)

σ̇ = C : ε̇, (2)

where C is a fourth-rank tensor, whose components generally depend on the deformation history and the dot above
denotes differentiation with respect to the deformation parameter t.

We consider the weak form of the equations of motion (1) expressed by the equation of the possible displace-
ment principle ∫

V

σ : δε dV =
∫

ST

T ∗ · δu dS ∀ δu. (3)

where δ denotes variation such that δu = 0 on Su (the boundary conditions on Su are principal and those on ST are
natural) and the Cauchy strain tensor variation is given by

δε = [∇(δu) + ∇(δu)t]/2.

Let us consider the case of plane stresses assuming that

σ33 = σ13 = σ23 = 0, T ∗3 = 0. (4)

The discrete analog of the equilibrium equations is obtained using the FEM based on the equilibrium
equations written in the weak form (3). We consider isoparametric finite elements for which the radius-vectors of
the material points and the displacement vector are approximated by the same set of polynomials. We consider the
mth finite element and introduce the vectors

σ = [σ11, σ22, σ12]t, ε = [ε11, ε22, 2ε12]t,
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and the nodal displacement vector of the element

Um = [u1
1, u

1
2, . . . , u

N
1 , uN

2 ]t,

where uk
i is the ith component of the displacement vector at the kth nodal point of the element. The constitutive

relations (2) can be written in matrix form

σ̇ = Cε̇, (5)

where C is a 3 × 3 symmetric matrix whose elements consist of the components of the corresponding fourth-rank
tensor under hypothesis (4). Let u = (u1, u2). We introduce the matrices B and H of an element such that the
following relations are satisfied in the mth element:

ε = BUm, u = HUm.

The matrices B and H depend only on the geometry of the element and remain unchanged during its deformation.
We introduce the tangential stiffness matrix of the element (Km), the surface-force vector of the element (Rm),
and the internal-force vector of the element (F m):

Km ≡
∫

V m

BtCB dV, Rm ≡
∫

Sm
T

HtT ∗ dS, F m ≡
∫

V m

Btσ dV. (6)

The integrals in (6) are calculated using the Gauss–Legendre quadrature formulas.
We introduce the vector of the global degrees of freedom of the finite-element assemblage

U = [U1, U2, . . . , UNEQ
]t,

where Ui (i = 1, NEQ) is one of the components of the displacement vector at a certain nodal point and NEQ is
the total number of independent components of the displacement vector of the assemblage of the nodal points. For
each mth element, the components of the vector Um consist of the components of the global vector U . The vectors
Um, Rm, and F m and matrix Km of each element are reduced to the size NEQ and NEQ × NEQ, respectively,
using Boolean matrices Am (whose elements consists of zeroes or unities) which are defined for the mth element by
the relation

Um = AmU .

The global tangential stiffness matrix K and the external and internal force vectors (R and F , respectively) of
the finite-element assemblage are given by

K ≡
M∑

m=1

AmtKm, R ≡
M∑

m=1

AmtRm, F ≡
M∑

m=1

AmtF m, (7)

where M is the total number of elements.
Then, the discrete analog of Eqs. (3) becomes

δU tF = δU tR. (8)

By virtue of arbitrariness of the vector δU , from (8) we obtain the discrete analog of the equilibrium
equations — the system of nonlinear equations for U(t):

F (t) = R(t). (9)

The equilibrium equations (9) are integrated by a step-by-step procedure. The deformation process is divided into
N steps [0, t1), [t1, t2), . . . , [tN−1, tN ), for each of which a solution U(ti) is found. The dependence of the vector
F (t) on the deformation history is taken into account as follows. It is assumed that the vector F (ti) is uniquely
determined by the sequence of states U(0),U(t1), . . . ,U(ti−1), and U(ti). Fixing the solutions constructed at
the previous steps, we assume that F (ti) = F (ti,U(ti)). The value of U(ti) is obtained by solving the nonlinear
system (9) using the iterative Newton method [4–6]. In the Newton method, the initial approximation is the solution
U(ti−1) obtained at the previous time step. In each iteration, one needs to invert the tangential stiffness matrix
K(ti), which is the Jacobi matrix for the function F (ti,U). The algorithm for determining the function F (ti,U)
and the tangential stiffness matrix is specified by the particular model of the material.
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2. Nonlinear Constitutive Relations for a Brittle Material. The constitutive relations (5) can
be used to model brittle fracture of materials. We describe two versions of these relations for a brittle material
assuming that plane stresses occur at the material point considered. To construct the vector F and the matrix K, it
is necessary to perform numerical integration of the expressions in (6). To this end, the integrands are calculated at
each integration point of the Gauss–Legendre formula. That is, one should determine C and σ at each integration
point.

For the models considered in the present paper, material behavior is determined by three parameters: Young’s
modulus E, Poisson’s ratio ν, and ultimate strength σt.

2.1. Isotropic Model of a Brittle Material. It is assumed that at each material point (integration point), the
material exists in two states: the intact state and the complete failure state.

1. The intact state is modeled by a linear elastic isotropic material:

C =
E

1− ν2

 1 ν 0
ν 1 0
0 0 (1− ν)/2

 , σ = Cε. (10)

2. The complete failure state is modeled by a material which has no carrying capacity

C =
E

1− ν2

 k1 νk1 0
νk1 k1 0
0 0 (1− ν)k2/2

 , σ = 0. (11)

Here k1 and k2 are small positive numbers used to regularize the tangential stiffness matrix.
At the initial time, the material is intact. Transition from the first state to the second state occurs when

the principal tensile stress exceeds the ultimate tensile strength.
2.2. Orthotropic Model of a Brittle Material. The orthotropic model is a particular case of the model given

in [7] (which allows one to analyze brittle fracture of thin-walled structures). At each point, the material can exist
in four states: the intact state, the open-crack state, the closed-crack state, and the complete failure state.

1. The intact state is modeled by a linear elastic isotropic material (10).
2. The open-crack state is modeled by a linear elastic orthotropic material weakened in a direction normal

to the crack plane. In the principal axes of the stress tensor, the matrix of the constitutive relations and the stress
vector are written as

Č =
E

1− ν2

 k1 νk1 0
νk1 1 0
0 0 (1− ν)k2/2

 ,

σ̌1 = σ̌12 = 0, σ̌2 =
E

1− ν2
(νε̌11 + ε̌22).

(12)

3. The closed-crack state is modeled by a linear elastic isotropic material (10), as in the case of the intact
state.

4. The complete failure state is modeled by a material which has no carrying capacity (11).
Transition from the first to the second state occurs when the principal tensile stress exceeds the ultimate

tensile strength under the assumption that the crack plane is normal to the first principal direction. Transition
from the second to the third state occurs if the strain along the axis normal to the crack plane becomes negative.
Transition from the third to the second state occurs if this strain is positive. If both principal stresses exceed the
ultimate strength, the fourth state is attained. It is assumed that when being in the state of complete failure, the
material cannot restore its carrying capacity.

3. Comparison of the Models by Solving the Failure Problem of a Symmetric V-Notched
Specimen. The material models proposed were incorporated in the PIONER software [8]. The numerical solutions
considered in this section were obtained using this software. Let us consider the failure of a V-notched brittle
plate. Figure 1 shows the geometry of the plate. The lower end of the plate is clamped and the upper end is
displaced as a rigid body by amount u in the vertical direction. The displacement of the end u is used as the
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Fig. 1. Fracture of a V-notched plate: geometry and finite-element mesh.

4 3 2 1 0

b

à

Fig. 2. Numerical solution of the problem for the isotropic model (a) and orthotropic
model (b).
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Fig. 3. Solution obtained by the procedure of eliminating failed elements

deformation parameter. Thus, we have the quasistatic problem that models the fracture of the plate under rigid
loading. The calculation parameters were as follows: Young’s modulus E = 107 Pa, Poisson’s ratio ν = 0.25, and
ultimate strength σt = 2 · 104 Pa. By virtue of the vertical and horizontal symmetry of the specimen, a crack
should appear at the notch tip and propagate strictly in the horizontal direction for both models of the material.
Owing to the vertical symmetry, only the left part of the plate was considered. In the calculations, elements with a
linear approximation of the geometry and displacement vector were used. Numerical integration was performed by
the Gauss–Legendre formulas with a total order of numerical integration of 2× 2. All calculations were performed
using a special finite-element mesh (see Fig. 1). In the vicinity of the notch tip, the mesh is oriented at an angle to
the principal directions of the stress tensor. The calculation results for the isotropic and orthotropic models with
varying finite-element partitioning are given in Figs. 2a and 2b, respectively. In Fig. 2, each elements is colored
in accordance with the number of integration points at which failure (partial or complete) occurs. The maximum
number of integration points is equal to four.

One can see from Fig. 2 that the isotropic model fails to predict the crack propagation direction adequately.
The crack path depends on the mesh orientation. For the orthotropic model, the situation is different. As the mesh
is refined, the crack path approaches a horizontal line and does not depend on the mesh orientation.

We note that the algorithm based on the isotropic model can be simplified as follows. Let us consider the
computational scheme which uses only the linear elastic material model. If the failure criterion is satisfied in a
certain element, this element is eliminated from the element assemblage. This is equivalent to eliminating the
corresponding terms in formulas (7). The calculation results obtained by this scheme are given in Fig. 3. Unlike in
the scheme based on the isotropic model, in the scheme considered, material failure occurs at once over the entire
element rather than at a certain integration point. In Fig. 3, the eliminated elements are colored black. One can
see that the solution is close to that obtained for the isotropic model. As for the isotropic model, the crack path
does not approach a horizontal line as the mesh is refined.

Conclusions. Although the two models considered in this paper describe the same material behavior,
these models differ from a computational viewpoint. The numerical schemes constructed for these models using
the standard FEM procedure give significantly different results. For numerical schemes of this class, a condition
for an adequate prediction of the crack growth direction is a good approximation of the stress field in the vicinity
of the crack tip. The isotropic model and method of eliminated elements fail to satisfy this criterion, whereas the
orthotropic model gives realistic results.
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